Hardware / Virtualization / Architectures

Foundations of the cloud
Implementing Virtualization Technologies

- Cloud Computing relies heavily on the concept of virtualization
 - In fact not possible without it.
 - But they are separate concepts
 - You can have virtualization without doing cloud computing

- Virtualization means to convert physical hosts to logical/virtual ones. This is not really something new. IBM did this from the 60’s on with their "VM" operating system (/370).
Cont...

- 2 Practical types of virtualization
 - Desktop Level
 - Places virtual machine as a process on top of the existing OS.
 - Great for research or testing of multiple items
 - Base operating system has no idea that there is another operating system.
 - Software abstracts and brokers all the system calls
 - Server Level
VMware Desktop Virtualization on PC
Oracle Virtual Box on Mac OSX
Server Level Virtualization

- Why call it that?
 - We use the entire system

- “To make things more effective than the user space model (mentioned in part 2) we can use a **Hypervisor**. The Hypervisor is a small piece of software which controls the hardware - it assigns memory, CPU cycles, PCI hardware. This hypervisor replaces the kernel of a traditional, "real" hardware system:”
How Hypervisor works

- X86 architecture
 - Most common and cheapest
 - Ring structure in x86 architecture
 - User process runs in Ring 3
 - Kernel or heart of OS Runs in Ring 1
- Hypervisor inserts itself between kernel and hardware
 - Ring -1
 - Separation prevents from Ring 3 causing entire system to crash by making sure system calls pass through proper channels
Hyper-V Architecture

Parent Partition
- WMI Provider
- Applications
- VM Worker Processes

Child Partitions
- Applications
- Applications
- Applications

Provided by:
- ISV / IHV / OEM
- OS
- Microsoft Hyper-V
- Microsoft / Citrix (XenSource)

User Mode
- Ring 3

Kernel Mode
- Ring 0
- Ring - 1

Windows Hypervisor
- "Designed for Windows" Server Hardware

Windows Server 2008
- Windows Kernel
- VSP
- IHV Drivers
- VMBus

Supported Windows OS
- Windows Kernel
- VSC
- VMBus

Non-Hypervisor Aware OS
- Emulation

Xen-Enabled Linux Kernel
- Linux VSC
- VMBus
- Hypercall Adapter
XEN – Open source Linux
KVM – In Linux Kernel
Hypervisors

- Just one part - need some management technology on top of it to utilize fully
- Three types of virtualization available
 - Paravirtualization
 - No hardware emulation, no need for VT-X and AMD-X CPU extensions
 - But also no Windows on Xen
 - Kernel of operating system that runs XEN needs to be modified
 - Full System Virtualization ← This is the one most used currently
 - Uses HVM (Hardware Virtualization Mode)
 - No need to modify underlying Kernel – CPU does all the translating
 - OS Level virtualization
 - FreeBSD Jail and Solaris Zones (give you access to multiple copies of the same OS per operating system)
Non x86 Hypervisor

- IBM has their Z/VM operating system and virtualization platform
 - Allows users to run multiple instances of Linux OS complies for the IBM zOS.
Xen

- Starts as part of the Kernel OS
 - Each virtualized OS has its own domain (called DomU)
 - All succeeding Virtual Machines have to communicate with the hardware through Dom0
 - Dom0 goes through the Hypervisor to the hardware.
 - Dom0 is only thing that has hardware access.
KVM

- Hypervisor uses AMD-V and Intel VT-x technology to change its architecture.
- KVM lives in the kernel as part of the standard Linux kernel as of 2.6.20 (if packages are enabled)
- Uses QEMU to do all the hardware emulation
Datacenter Tech

- Starts with your processors
 - Older processors do not have the on chip instruction sets to effectively do Hardware Emulation
 - All new processors do (enterprise level for sure)
 - Intel Xeon 5600 Nehalem class
 - Intelligent Power technology
 - Drop processor speed and memory speed to lessen power draw when needed – also can over clock when necessary as well.
 - VT-c – direct access to network for Hypervisor (if supported)
 - VT-d – direct access to storage for Hypervisor (if supported)
 - Intel Xeon 7500 Nehalem class
 - Internal self-diagnostics and self healing
 - Supports 16GB DDR3 dimms and 8 core chips
Virtualization pieces

- Virtualization is one piece.
- You need some management component on top of that.
- The idea behind cloud:
 - Utilize commodity hardware
 - Utilize lots of it to abstract your computing resources
- Chip based technologies help
 - You now have a large number of smaller systems instead of a few large systems
 - Power and cooling become a financial cost
 - Also Rip and Replace become the option instead of nurse and repair. (Cost vs. Time)
Datacenter changing with clouds entrance

- Previous data center was wild west of standards
 - Intel working with other groups and companies to produce standard for datacenter
 - http://www.opendatacenteralliance.org/
- Currently datacenter built around the application, then OS, and then some hardware was bought to run it
 - Example Airline reservation system.
- Virtualization came in and helped reduce need for physical servers but the design principal is still largely the same.
- The problem: this datacenter design is not meant to handle spikes and sags (too expensive)
Cloud based datacenter

- Model of computing is changing
 - Datacenter used to serve internal clients or fixed number of outside clients
 - Clients are now more numerous and mobile
 - Data can surge and swell based on popularity
 - Small example: When singer Michael Jackson died Google was crushed under wave of people checking to see if it was true.
 - Cloud based datacenter allows for users to provision the resources they need—instead of begging an admin for some space or requisitioning a system.
 - Cloud based data center is User driven, User provisioned, and responding to mobile clients.
Networking in the cloud

• Data is abstracted
 • Two new concepts are utilized
 • iSCSI - http://software.intel.com/file/31966
 • Hard drive commands over TCP to connect to storage on the network
 • Excellent for attaching NAS, SANS
 • Cheaper than Fibre Channel
 • Requires internal private network – not on public network
 • Jumbo Frames
 • Data – larger frames let you pass more data in less processing time
 • Dell, HP, Cisco producing switches that handle Jumbo Frames and have the priority for iSCSI increased – designed for the cloud…
Ideal datacenter

• Similar to what Microsoft, Google, Amazon, and Rackspace are offering.
 • Two types of Cloud computing
 • Offer just a simple set of API’s
 • Amazon has S3 for storage, EBS for permanent storage, and SimpleDB
 • Rackspace has their competing open source version of all Amazon products
 • Google lets you access their Gmail and Picasa API
 • Microsoft gives you program access to their SQL server in their cloud
 • All abstracts the need for separate operating systems.
 • Now you are just offering services not complete operating systems and the user does not need to worry about compatibility.
 • No need to test and build on different hardware – all API based.
 • Really back to the mainframe concept
 • Now IT is focused on Access Control an not so much hardcore IT.
What really makes the cloud go?

- You need some kind of management software
 - to integrate with all your CPU tech and virtualization platforms
- Cloud platforms – open source
 - Eucalyptus
 - Ubuntu Enterprise Cloud (built on top of Eucalyptus)
 - OpenStack (Rackspace – Amazon competitor)
 - Nimbus
- All of these are Amazon service compatible?
 - Why?
Ubuntu Enterprise Cloud Example

[Diagram showing the structure of Ubuntu Enterprise Cloud with clusters, controllers, and storage controllers.]

https://help.ubuntu.com/community/UEC ← Installation link
Example Explained

- We need a server to interact with (user) Cloud Controller
 - No need for fast hard drives of new processors (can reuse older hardware)
- There is a Walrus controller
 - Can be accessed via API for someone to attach temporary storage to another project programmatically
 - No need to interact with our Cloud Controller
 - No need VT-x technology here just a lot of hard drive storage for people to use.
• The cloud controller talks to the Cluster controller
• The Cloud Controller allows us to provision virtual machines we have created previously (or downloaded)
• The actual instances are stored on our Node Controllers
• These use KVM to do the virtualization
 • They need VT-x based CPU’s
 • As much memory and CPU cores as they can get
 • KVM virtualization helps utilize every last drop of resources for multiple virtual machines on a single node controller
 • We can continually add more node controllers and expand our “Cloud”
 • -- hence the name could computing
Cluster Controller can also connect to Storage controller
 • Allows for EBS like permanent storage
 • Cloud advantage is that when finished with instance – resources are recycled
 • But what if you want to save some of the data?
 • Attach some EBS permanent storage

What if I use all of the computers I have available and still need more computing power?
 • All projects currently (UEC, Eucalyptus, OpenStack) are all Amazon compatible and you can add their exhaustive resources to yours or move yours into theirs.
 • Dominos Pizza does this one day of the year every year: which day?
Optimizations

- As we look at CPU and software virtualization where can we improve
 - Direct Access
 - Letting virtualized systems have direct hardware access to Hard Drives and Networking cuts down on overhead and increases throughput in some cases.
Not a Single Box

- Planning your cloud applications and what you will need to create to get them going
 - Images which will run your code
 - Storage mechanism to hold data
- These 2 things are not on the same box. You should not rely on operating system messaging or working with a local filesystem to manage how your software interacts with data.
Creating Images

- What consists of an image?
 - Operating System?
 - Application Servers (Oracle, Windows, Hadoop)?
 - Packages (Map reduce / Apache / Tomcat)?
 - What does your application need?
 - “Golden Images”

Remember, storage should be treated separately.
Amazon EC2 Image Tutorial

- We will log into Amazon Web Services
 - Username: valscarlata@gmail.com, password: itmisfun
 - Create an AMI (amazon machine image)
 - Launch the AMI
 - Stop the AMI
 - Attach EBS (Elastic Block Storage Device) to the AMI
 - Snapshot the EBS volumes
 - This is how you would backup your data / drives
 - You can also mount these drives in different AMI instances
How Can We Access the AMI?

- We need to configure / add packages to the instance after we have launched it.
- SSH into it
- Remote desktop into it (windows)
- Use Amazon developer tools to access it.
Links and sources

- http://www.opendatacenteralliance.org/
- http://www.capgemini.com/ctoblog/2011/01/the_new_data_centre_is_not_you/
(opening slide) // hypervisor pictures
Links and Sources Continued

- http://elite-itsolutions.co.uk/images/diag-hyperv-arch.png // Hyper-V picture
- http://open.eucalyptus.com/wiki/EucalyptusAdvanced_v2.0
- https://help.ubuntu.com/community/UEC/PackageInstallSeparate
- http://software.intel.com/file/31966